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Enthalpy relaxation in glassy polymers
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Summary

Constitutive equations are derived for enthalpy recovery in amorphous glassy poly-
mers. The model is based on the concept of cooperative relaxation which treats a
polymer as an ensemble of flow units rearranging at random times. The rate of rear-
rangement is determined by the Eyring theory of thermally activated processes. Fair
agreement is demonstrated between results of numerical simulation and experimental
data for polycarbonate, poly(ether imide), poly(methyl methacrylate), polystyrene
and a glycerol glass.

Introduction

The paper is concerned with enthalpy relaxation in amorphous glassy polymers after
thermal treatment. This subject has attracted substantial attention in the past decade
because differential scanning calorimetry provides a convenient procedure for studying
equilibration processes in disordered media (1-4). The latter is of essential importance
for applications, since structural recovery is accompanied by changes in static and
dynamic elastic moduli, yield stress, elongation to break, fracture toughness, fatigue
failure and impact strength (5). The significance of enthalpy relaxation for polymer
engineering is explained by its role as an indicator of transition from ductile to brittle
modes of failure (6-8).

Enthalpy recovery is conventionally observed in a one-step thermal test, when a
specimen equilibrated at some temperature T0 above the glass transition temperature
Tg is quenched to a temperature T < Tg and is preserved at the annealing temperature,

Experiments evidence that the specific enthalpy per unit mass H decreases with time
and approaches its equilibrium value Heq(T).

Physical aging is traditionally described by two phenomenological models. The
first is based on the hypothesis that the rate of approaching equilibrium is proportion-
al to some measure of departure from the equilibrium state (3,9,-11). This assump-
tion seems rather plausible, but constitutive equations with a single thermokinetic
structure fail to predict observations in tests with non-monotonic thermal programs
(10,12), whereas multiparameter (10,12) and multiorder (13) relations, where free vol-
ume and fictive temperature are split into several fragments with different rates of
equilibration, have no physical meaning (14).
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The other model presumes that enthalpy evolution is governed by the stretched
exponential (Kohlrausch-Williams-Watts) law (1,4,15). Despite some attempts to
"deduce" the KWW function from molecular concepts (16-19), the constitutive equa-
tions remain merely phenomenological, because they provide no way to predict obser-
vations in one test (e.g., calorimetric, dielectric, dilatometric, mechanical, etc.) using
data in another experiment. The applicability of the stretched exponential function
was questioned in several studies where this law was replaced by an algebraic time
dependence (20).

The objective of this note is to derive constitutive equations that adequately de-
scribe enthalpy relaxation and may be applied to predict the response of glassy poly-
mers in other tests. Enthalpy recovery in polymers at an arbitrary thermal program
T = T(t) is studied by using the theory of cooperative relaxation (21) in a version of
the trap concept (22,23). A similar approach was previously employed for the analysis
of thermo-mechanical response in soft glasses (24) and amorphous polymers (25).

Rearrangement of a flow unit

The time-dependent response of polymers is conventionally treated as rearrangement
of long chains in a temporary network. For glassy polymers, this process requires
cooperative dynamics of chain molecules, when scores of neighboring strands change
their position simultaneously (21). An amorphous glassy polymer is modeled as an
ensemble of cells (cooperatively rearranging regions or flow units) which are thought
of as globules consisting of long chains, short chains and free volume clusters (24).

In accordance with the transition-state theory (26), we assume that some liquid-
like (reference) state exists on the energy landscape, where cells change their config-
urations. The position of an arbitrary flow unit trapped in a cage with respect to the
reference state is characterized by the energy w of its potential well. For definiteness,
we set w = 0 for the reference state and w > 0 for relaxing regions.

Rearrangement of cells is treated as a sequence of random hops of flow units driven
by thermal fluctuations (23). This process is characterized by its rate (the number of
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hops per unit time) and intensity (the probability for a rearranging region to reach
the excess energy w over the bottom level of its potential well). Denote by q(t, w, m)
the current probability for a cell with energy w to hop m times per unit time, and by
�(w) the probability to reach (in an arbitrary hop) the energy level that exceeds the
bottom level of the potential well by w. Referring to (23), we set �(w) = A exp(-Aw),
where A is a material constant, and determine the probability for a cell with potential
energy w to reach the reference state in a hop

The probability for a cell to make m hops per unit time reads

where � � (0, 1) is a material parameter and b(t, w) is a prescribed function. For
mutually independent hops, Eqs. 2 and 3 together with the formula for conditional
probability imply the probability for a cell with potential energy w to reach the
reference state per unit time

The average number of hops per unit time is given by

Combining these equalities, we arrive at the formula

(4)
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For � << 1. Eq. 4 coincides with the Eyring formula (27) for the rate of thermally
activated processes

provided the rate of hops is independent of the depth of potential well, �(t, w) = �0(t).

The kinetic equation

Any rearrangement event is modeled as a hop of a flow unit from its quasi-equilibrium
state on the energy landscape to a liquid-like state, where the unit "forgets" its previ-
ous configuration, followed by landing from the reference state either to the previous
or to a new quasi-equilibrium state (22). Since the duration of a hop (several pi-
coseconds) is small compared to the characteristic time of relaxation in the �-region,
we treat hops as instantaneous. The main hypothesis is that in the overwhelming
majority of hops, relaxing regions come back into their previous states (which models
the viscoelastic response), but in a small amount of events, their energies change, and
flow units land in new quasi-equilibrium states (which models structural relaxation
in disordered media). This allows discrepancies between characteristic rates of struc-
tural recovery and mechanical response to be explained by the difference between the
frequencies of "usual" (hops returning to previous states) and "rare" (hops landing
in new states) events, in contrast with other approaches, where different physical
mechanisms are used for structural and mechanical relaxation (28).

The number of cells (per unit mass) with potential energy lying within the interval
[w, w + dw] that hop to the reference state per unit time reads NL(t, w)p(t, w)dw,
where N is the number density of cells (per unit mass) and p(t, w) is the distribution
function of cells with potential energy w.

The first assumption is that the number of flow units changing their energy per
unit time is proportional to the excess of the current number of rearranging regions
with a given energy w over their equilibrium number at the current temperature T(t).
This means that cells with p(t, w) < peq(T(t), w), where peq(T, w) is the equilibrium
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probability density of flow units with potential energy w at temperature T, come
back to their quasi-equilibrium states after hops, whereas the number of cells (in
unit mass per unit time) with p(t, w) � peq(T(t), w) landing in new states is given
by dQ-(t, w) = � N L(t, w)p(t, w)[p(t, w) - peq(T(t), w)], w)]dw, where � is a material
parameter. The total number of rearranging regions (per unit mass) changing their
potential energy per unit time reads

where H is the Heaviside function. The other hypothesis is that cells changing their
states are redistributed proportionally to the difference between the equilibrium num-
ber and the current number of flow units with appropriate potential energies. This
means that only the population of cells with p(t, w) < peq(T(t), w) increases, and the
number of regions (per unit mass) acquiring (per unit time) the energy in the interval
[w, w + dw] reads dQ+(t, w) = cQ-(t)[peq(T)(t), w) - p(t, w)]dw, where c is a material
parameter. The total number of cells changing their energy per unit time is given by

where the constant c is found from the balance law Q-(t) = Q+(t). These formulas
result in the nonlinear integro-differential equation

where L0 = �L is the rate of nonrelapsing hops (when a cell lands in a new state).
Equation 6 generalizes "the energy master equation" (22,29,30). To derive this re-
lation, two assumptions were used similar to those in the Kovacs model (10). The
difference between the two approaches is that Kovacs' hypotheses are formulated for
various kinds of free volume clusters (that have no physical meaning), whereas our
postulates are applied to the probability density of traps with various potential ener-
gies.

Comparison with experimental data

The configurational entropy per rearranging region (that characterizes the level of
disorder in an ensemble of cells) is given by (31)

where kB is Boltzmann's constant. The Adam-Gibbs equation (21) reads

where �eq(T) is the equilibrium average rate of hops, seq(T) is the equilibrium config-
urational entropy of a cell at temperature T, �µ is the free-energy barrier hindering
rearrangement. R is the gas constant, s* = kB ln n is the critical entropy, and n is the
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smallest number of strands permitting rearrangement. Formula 8 was employed (in
another context) to describe enthalpy relaxation in polymeric glasses in (32). Given
material parameters �, �µ, s* and functions �eq(T) and peq(T, w), Eq. 6 with coef-
ficients 7 and 8 determines the current probability density p(t, w) of flow units with
potential energy w. Subtracting the equilibrium configurational entropy seq(T(t)) at
temperature T(t) from the current configurational entropy s(t), we determine the ex-
cess entropy per cell �s and the specific excess entropy per unit mass �S = N�s.
The specific excess enthalpy �H = H(t) - Heq(T(t)) is expressed in terms of the
specific excess entropy �S by means of the conventional formula ��H/��S = T.
For isothermal annealing, this equation is explicitly integrated,

We accept the Rayleigh formula for the equilibrium probability density of flow units

where w- eq(T) is the average energy of cell at temperature T. It is assumed that at
rapid heating (cooling), the distribution function preserves its shape, whereas the
average energy of rearranging regions changes. For thermal test 1, this means that

function 10 with some w-  (0) may serve as an initial condition for Eq. 6.
Enthalpy relaxation in an amorphous polymer is determined by 6 material param-

eters: A. �µ. N, L0

eq  e��eq(T), w- (0) and w- eq(T). The quantity A characterizing the
scale for potential energy w may be chosen arbitrarily; for convenience of numerical
simulation, we set A = 0.1 and treat w as a dimensionaless quantity. To reduce the
number of adjustable constants, we suppose that �µ ln n/(RT) = 0.1. For n = 2 (21)
and tests at ambient temperature, this implies that �µ = 357.64 J/mol. Comparing
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this value with appropriate activation energies for creep in a number of polymers [Ta-
ble 3 in (33)], we find that the activation energy for structural recovery is about 4%
of that for mechanical relaxation (in qualitative agreement with experimental data
on the effect of temperature on the characteristic times for physical aging and stress
relaxation). Other parameters are found by fitting experimental data for polycarbon-
ate, polystyrene, poly(methyl methacrylate), a glycerol glass, and poly(ether imide).
For detailed descriptions of the experimental procedures, we refer to (1,11,34-36).
Figures 1 to 3 show that the value of kBTN is about unity. For polycarbonate, this
implies that N = 1.46 x 1027 m-3, which is in good agreement with observations for
polyethylene (37) which result in N = 0.73 x 1027 m-3 (the difference by twice may
be explained by the high level of crystallinity in polyethylene: the concept of traps
reflects only the response in an amorphous phase of a semi-crystalline polymer). Fig-
ures 1 to 3 and 5 provide similar magnitudes of the excess enthalpy for amorphous
and semi-crystalline polymers: the quantity �H in Figure 5 weakly exceeds that de-
picted in Figures 1 to 3, but it is in agreement with other data for polystyrene (38)].
Figure 4 demonstrates higher values of �H for the supercooled molecular liquid than
for amorphous polymers. An increase in the excess enthalpy of glycerol compared to
conventional amorphous polymers is in agreement with experimental data obtained
by dielectric spectroscopy (39) and neutron scatering (40,41) and may be explained
by the severe effect of vibrational modes on structural relaxation (40,41).

Concluding remarks

A model has been derived for enthalpy recovery in amorphous glassy polymers after
thermal treatment. The constitutive relations are based on the theory of coopera-
tive relaxation in a version of the concept of traps. The model adequately predicts
enthalpy recovery at isothermal annealing in amorphous [polycarbonate, poly(methyl
methacrylate), polystyrene, a glycerol glass] and semi-crystalline [poly(ether imide)]
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polymers.
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